VIBRATIONAL SPECTRA AND STRUCTURE

OF 1,2,4-TRIAZOLE DERIVATIVES

II.* INTERPRETATION OF THE VIBRATIONAL SPECTRA OF 3-NITRO-

perimental spectra were assigned to the principal types of vibrations.

AND 1-METHYL-3-NITRO-1,2,4-TRIAZOLE DERIVATIVES

V. V. Mel'nikov, V. V. Stolpakova, M. S. Pevzner, and B. V. Gidaspov

UDC 547.792:543.422.4

The frequencies and forms of the normal vibrations of 3-nitro-1,2,4-triazole, its 1-deutero- and 1-methyl derivatives, and 1-methyl-3-nitro-5-chloro(bromo)-1,2,4-triazole, which are classified as having C_S group symmetry, were calculated. The potential energy constants were refined by solution of the reciprocal spectral problem, and the frequencies in the ex-

We have previously shown [2] that the IR and Raman spectra of all -without exception -nitro derivatives of 1,2,4-triazole derivatives contain bands at ~1555 cm⁻¹, which characterize the antiphase vibration of the nitro groups, in connection with which it was assumed that the nitro group in the 3 position should be situated in the plane of the triazole ring.

For the calculations of the vibrational spectra of derivatives of 3-nitro- and 1-methyl-3-nitro-1,2,4-triazole, we therefore selected models pertaining to the C_S symmetry group, i.e., the nitro group in the 3 position is situated in the plane of the triazole ring. In conformity with the symmetry of the investigated compounds, the normal vibrations are broken down in the following manner with respect to symmetry: for 3-nitro-1,2,4-triazole

$$\Gamma_{\mathbf{v}} = 17\mathbf{A}' + 7\mathbf{A}''$$

for 1-methyl-3-nitro-1,2,4-triazole and its 5-halo derivatives

$$\Gamma_{v} = 22A' + 11A''$$
.

Rotation of the nitro and methyl groups about the corresponding bonds was disregarded in the calculations. The natural vibrational coordinates of 3-nitro-1,2,4-triazole and 1-methyl-3-nitro-1,2,4-triazole are presented in Fig. 1.

The geometrical parameters of the triazole ring were in conformity with the data from x-ray diffraction analysis [3], the N-O and C-N bond lengths were taken as 1.22 and 1.40 Å, the ONO valence angle was assumed to be 126° , and the methyl group was assumed to have the standard geometry. The geometrical parameters of the C-NO₂ group were estimated from the "bond order-bond length" correlation curves [4] in conformity with the data calculated by the MO LCAO method [5]. The constants presented in [1,6] were used for the zero approximation of the force constants of the triazole ring, the nitro group, and the methyl group. The force constants selected in this manner were refined by calculation of the partial derivatives from the frequencies with respect to the force constants and by solution of the reciprocal spectral problem for all of the investigated compounds.

Lensovet Leningrad Technological Institute. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 707-712, May, 1973. Original article submitted April 1, 1972.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

^{*}See [1] for communication I.

TABLE 1. Force Constants of 3-Nitro-1,2,4-triazole in units of 106 cm-4*

rotee constants of 3-11110-1,2,4-triazole (in units of 10° cm 2)*	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	12,9 10,60 11,20 13,40 11,7 3,0 2,80 1,54 1,20 0,70 0,65 0,46 0,54 1,20	$A \beta_3^{1} = A \alpha_1^{0_1} = A \beta_2^{0_2} = A \beta_3^{0_3} = I \beta_3^{0_1} = I \beta_3^{0_3} = I \beta_3^{0_3} = I \beta_3^{0_1} = I \beta_3^{0_2} = I \beta_3^{0_3} = I $	5 0,6 -0,78 0,76 -0,20 0,35 -0,06 0,3 -0,2 0,38 0,35 0,25 0,20
or coulding of 3-Millo				
	Kq Kqs	8,65 9,15	$H_{q_2q_3} \mid H_{q_2Q_1} \mid A_{\beta_1}^{q_1} \mid$	0,65 0,645
T OT THE PERSON	Kq_1 Kq_2	8,55 14,0	H q1q2 H q2q3	0,937 1,65

* The force constants were designated in accordance with [6]; ρ_1 , ρ_2 , ρ_3 , and ρ_4 are the out-of-plane vibrations of the N-O, C-N, N-H, and C-H bonds; χ are the out-of-plane ring vibrations.

TABLE 9. Force Constants of 1-Methyl-3-nitro-1 2 4-triazole for units of 106 cm⁻²*

LADLE Z.		orce S	าแรเสนเ	roice constants of 1-methyl-3-nitro-1,2,4-triazoie (in units of 10° cm	Metny	-2-ult	ro-1,2	,4-tria	zore (1	n units	,01 IO	cm .)	+			
Kgı	KQ,	KQ2	Kq,	KQ3	, K 95	K_{q_6}	KQ.	KQs	Kaı	Kα₂	Kas	Κα ₄	Kαs	КВ,	KBs ,	Ky ₁
8,3	12,6	10,1	7,2	12,0	8,85	8,3	13,2	11,6	3,3	3,1	3,1	3,2	3,3	1,4	1,1	1,1
Kya	K p ₂	κ*	H 4,Q2	$H_{Q_3Q_2}$	H 4,Q3	Н 9697	A.9.	A 83	A 9.	Α φ,	A91	A 96	lα3	/ B.	1 %1	1 %
2,0	0,71	19'0	1,2	2,0	1,2	0,05	-0,74	0,32	9'0	-0,7	9,0	0,35	-0,2	0,3	-0,03	-0,03

* The symbol δ_3 is the out-of-plane vibration of the C-N bond (q_4) .

TABLE 3. Force Constants of 1-Methyl-3-nitro-5-chloro(bromo)-1,2,4-triazole (in units of 106 cm⁻²)

Κα ₄	3,2	ACCI(Br)	7,0—
KNCBr	1,2	A SCI(Br)	9,0
KNCCI	1,3	lβs α,	-0,5
KQs	6,11	ιβ ₈ , β,	0,3
KQ,	6'11	104 B7	-0,5
KQ3	12,6	HQ4(CBr)	1,7
KQ,	10,3	H Q4(CCI)	8,1
KQ,	12,2	HQ3(CBr)	8,1
KcBr	7,1	H _{Q3} (CCI)	1,9
Kccı	8,5	KpcBr	0,20
K_{q_1}	8,2	K pccı	0,25

TABLE 4. Frequencies and Forms of the Normal Vibrations of Nitrotriazoles

 O_2N \bigwedge_N \bigwedge_R

	R=	=CH3, R'=H		R=CI	I ₃ , R'=Cl		R	=CH ₃ , R'=Br		
Sym- metry	ν(IR), cm-1	v (Raman). cm-1	v calc	ν(IR), cm-1	(Raman) cm-1	v _{calc} ,	ν(IR), cm-1	ν(Raman), cm ⁻¹	v _{calc} , cm ⁻¹	Form of vibrations
A'	3105 s	_	3106	_				_	_	-q ₅ (vch)
A′	3010	_	3010	3048 w	_	3010	3035 w-		3009	$q_6, -q_7, -q_8$
Α"	3010 s, b	_	3009	2950 w	_	3009	2950 W	_	3009	$q_7, -q_8$
A′	2900	Ì	2943	2900		2943	_		2943	q ₇ , q ₈ , q ₆
A'	1555 vs	1549 (1,2)	1558	1555 vs	1557 (1,8)	1556	1555 vs	1555 (1,3)	1555	$ q_2, -q_3 $
A'	1510 vs	1498 (4,7)	1524	1495 vs	1486 (2,8)	1512	1490 vs	1482 (3,1)	1520	$-q_1, Q_1, Q_4$
A'	1483 m	_	1483	_	_	1476	_	_	1475	$-\gamma_1$, $-\gamma_2$, $-\gamma_3$, γ_4 , γ_5
A'	1470 m	. –	1473	1472 sh, b		1472	1480 sh, b	_	1473	$\gamma_1, -\gamma_2, -\gamma_3, -\gamma_4, -\gamma_5, \gamma_6$
A"	1457s	_	1466		_	1466		_	1466	$-\gamma_2, \gamma_3, \gamma_4, -\gamma_5$
A'	1445 \$	1439 (4,9)	1442		_	_	_	_	-	$-Q_1, Q_4, \beta_7, \beta_8$
A'	1420 vs	1400 (10)	1416	1425 s	1421 (10)	1409	1420 s	1412 (10)	1417	-Q ₅ , γ
A'	_		-	1400 m		1384	1398 m		1395	Q_1 , $-Q_4$
A'	{1390 m 1368 m	1360 (0,5)	1379	{1385 m }	1380 (3,9)	1364	{1380 m ∫ 1367 m	1368 (1,8)	1363	-Q3, γ
A'	1313 vs	1302 (0,5)	1316	1312 s	1308 (1,0)	1307	1313 vs	1304 (1,0)	1307	q_2, q_3
A'	{1280 m	1278 (4,0)	1295	1272 m	1273 (3,4)	1273	1269 m	1266 (3,8)	1272	Q2, Y
A'	1207 s	_	1197	Ī –	'	-	_	_	-	-β ₇ , β ₈
Α"	1130 W	-	1110	1120 W	_	1108	1120 W	_	1108	γ_2 , $-\gamma_3$, γ_4 , $-\gamma_5$
A'	1073 w	1051 (2,1)	1075	1147 s		1135	1130 s	_	1139	$\gamma_1, -\gamma_2, -\gamma_3, \gamma_4, \gamma_5, -\gamma_6$
A' .	1039 s	1022 (0,5)	1031	1045 w	1042 (1,2)	1033	1046 w	1039 (1,4)	1032	$\alpha_1, -\alpha_2, \alpha_3, -\alpha_5$
A'	1019 w	1009 (1,0)	991	1021 w	1022 (0,6)	1010	1023 w	1021 (0,8)	1009	Q_2 , α_2 , α_3 , $-\alpha_4$, α_5
A"	902 m	<u> </u>	916	_	-	_	_	_		ρ_2 , $-\rho_4$, χ
A" A'	837 vs	832 (0,6)	818	843 s	835 (0,4)	\begin{cases} 877 \ 821 \end{cases}	841 vs	_	878 806	$-\rho_2, \rho_4, \chi$ $-q_1, q_4, q_5$
A'	775 w 740 w 723 w		767							$q_4, \alpha_2, -\alpha_3, \alpha_4, -\alpha_5$
A"		_	_	723 m	723 (0,8)	714	713 m	_	705	ρ_3 , $-\rho_4$, χ
A"	700 · s	702 (0,4)	693	685 m	_	679	680 m	_	678	ρ ₁ , χ
Α"	663 vs	_	654	_	-	_		_	_	ρ_1 , $-\rho_3$, χ
A'	~650 w	_	608	644 m		640	645 W	_	619	$-\beta_1, -\beta_2, -\alpha_1, \alpha_2$
A'	_	_	537	590 w	_	580		- .	573	$\beta_1, -\beta_2, -\beta_3, \beta_4$
A'		_	-	536 m	_	520	420 w	_	428	<i>q</i> ₅
.A'	_	_	352	_	371 (0,3)	∫ 393	_	384 (0,2)	∫360	β_1 , β_2 , β_5 , β_6
.A"	-	_	238	_		374			362	$\rho_2, -\rho_3, \rho_4, \chi$
A'	-	-	287	_	243 (0,2)	∫282	5	299 (0,1)	266	β_1, β_2
A'	-	_				206		209 (0,3)	186	$\beta_7, -\beta_8$
A'	-	_	173	-		153	-	136 (1,2)	132	$-\beta_1$, β_2 , $-\beta_3$, β_4
A"	_		125	_		123	-	-	122	χ
A"						84	_	_	66	рс-нав, χ

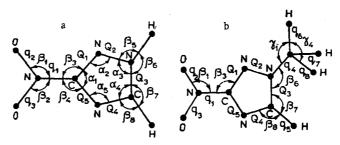


Fig. 1. Structure and natural vibrational coordinates of 3-nitro-1,2,4-triazole (a) and 1-methyl-3-nitro-1,2,4-triazole (b).

The final values of the potential energy constants for 3-nitro- and 1-methyl-3-nitro-1,2,4-triazole and its 5-halo derivatives are presented in Tables 1-3, in which the force constants, altered as compared with the data in [1], are presented for the triazole ring.

When an electron-acceptor nitro group is introduced into the 3 position of the ring, one observes, as expected, a change in the potential energy constants of the valence and angular coordinates of the triazole ring, which interact directly with the coordinates of the nitro group, and the force constants of the N-N and C-N (Q_4) bonds increase; this increase should lead to an increase in the degree of double-bond character of the latter. The results are in good agreement with the results in [5], in which it was shown that the orders of the N-N and C-N (Q_4) bonds for 3-nitro-1,2,4-triazole increase as compared with 1,2,4-triazole.

Replacement of the proton in the 1 position by a methyl group leads to an increase in the force constants of the C=N (Q_3) bond and the angular coordinates of the ring and to a slight decrease in the force constants of the remaining valence bonds of the ring, and there is a still more significant increase in the constant of the C=N (Q_3) bond and a decrease in the elastic constant of the C=N (Q_4) bond when the proton in the 5 position is replaced by halogen (chlorine or bromine) (Tables 1-3), i.e., the force field of the triazole ring, which characterizes the electronic interaction of the atoms, is sensitive to the introduction of both electron-acceptor $(NO_2, Cl, and Br)$ and electron-donor (CH_3) substituents into the ring.

For a more reliable interpretation of the vibrational spectra of the nitrotriazoles, the frequencies and forms of the normal vibrations of the N-deuterated derivative of 3-nitro-1,2,4-triazole,* 1-methyl-3-nitro-

TABLE 5. Frequencies and Forms of Normal Vibrations of Isotopically Substituted 3-Nitro-1,2,4-triazoles

Sym-	1-H-3-N tri	1-D-3-Nitro-1,2,- 4-triazole			Form of vibrations		
netry	ν(IR). cm ⁻¹	(Raman)	v calc	ν(IR)	, cm-1	cm-1	torin or violations
	_tem	CIII	CIII	<u>' </u>		1 0111	
A'	3155 s		3156	3155	m	3156	q_5
A'	3058 s	_	3045	2230	VS	2267	45 94
A'	1566 vs	1558 (2,3)	1566	1558	VS VS	2201	q_2^{4} , $-q_3$, $-\beta_1$, β_2 , β_3 , $-\beta_4$
A	1500 43	1000 (2,0)	1000	1568	VS VS	1566	42, 43, pl. pz, ps, 1
A'	1524 vs		1525	1505	VS VS	1524	$q_1, -Q_1, -Q_4, -\beta_7, \beta_8$
A'	1484 VS	1480(4,7)	1467	1447	S	1462	$-q_1, Q_1, -Q_4, -\beta_7, \beta_8$
۸,	1430 vs	1417(10)	1427	1435	m	1426	$-q_1, Q_5$
A' A' A'	1383 vs	1385 (8,6)	1376	1366	VS	1368	Q_3 , $-\beta_7$, β_8
Λ'	1314 vs	1304(1,0)	1314	1315	VS	1314	q_2, q_3
A'	1272 s	1245 (2,0)	1011	1276	m		$Q_{2}^{27}, \stackrel{q_3}{-}Q_3$
А	1212.3	1218 (3,5)	1281	1238	S	1276	42 , 4 3
A'	1186 m	1179 (3,0)	1186		sh, m	1174	$-\beta_7$, β_8
Ã″	1111 s	1110(0,5)	1109		s	1085	ρ4 Ρο
A'	1018 s	1001 (1,0)	1032			($-\beta_5$, β_6
Â'	981 vs	973 (0,5)	983	972	vs	998	$-\alpha_1, \alpha_2, -\alpha_4, \alpha_5$
Ã′	918 m	0,0(0,0)	917	900	m	912	$\alpha_2, -\alpha_3, \alpha_4, -\alpha_5$
Ã″	879 s	_	902			_	03
A"	837 vs	835 (0,8)	814	842	VS	855	$-\rho_2, \rho_3$
A"	_			778	W	771	$-\rho_2, \rho_3$
A'		l _	_	725	w	757	$-\beta_5, \beta_6$
Ä"	655 s	_	668	665	S	667	ρ_1
A'	645 s		643	650	m	641	$-\beta_1$, $-\beta_2$, q_1
Â'	540 vw	542(0,5)	543	527	vw	539	$-\beta_1$, β_2 , β_3 , $-\beta_4$
A"	447 m	435 (0,5)	429			373	$\chi_1 - \rho_3$
Â'	1 = =		307			306	$\hat{\boldsymbol{\beta}}_{1}^{2}, \; \hat{\boldsymbol{\beta}}_{2}^{2}$
Â'		225(1,0)	215	_		212	β_{2} , $-\beta_{4}$
Ã″			182	_		176	χ, ρ ₂

^{*}This compound was obtained after repeated recrystallization from D₂O_• The IR spectra of mineral oil suspensions of the compounds were recorded by the usual method with IKS-14 and IKS-22 spectrometers,

1,2,4-triazole and its 5-chloro (bromo) derivatives with the force constants obtained from solution of the reciprocal spectral problem.

The results of the assignment of the frequencies in the experimental spectra for the investigated nitrotriazoles are presented in Tables 4 and 5.

Despite the uncharacteristic nature of the form of the vibrations (Tables 4 and 5), narrow regions of frequencies that describe the vibrations of definite structural fragments of the molecules can be isolated for the investigated nitrotriazoles.

The vibrations of the nitro group, which are localized over quite narrow spectral intervals, are the most characteristic with respect to frequency: the symmetrical stretching antiphase vibration of the nitro group is ~ 1555 cm⁻¹, the symphase vibration is 1302-1315 cm⁻¹, the out-of-plane vibration is 680-700 cm⁻¹, and the deformation vibration is ~ 645 cm⁻¹.

Insofar as the deformations of the triazole ring are concerned, the stretching vibrations of the ring C-N bonds (Q_3 and Q_5) appear at ~1385 and 1420 cm⁻¹, respectively, while the vibrations of the remaining C-N (Q_1 and Q_4) bonds appear together at 1400-1480 cm⁻¹. The vibration of the N-N bond at ~1275 cm⁻¹ is also relatively characteristic with respect to frequency. Because of the quite considerable magnitude of the kinematic and dynamic coefficients of interaction between the vibrational coordinates of the triazole ring, it is practically impossible to isolate the narrow spectral regions of the frequencies for the deformation and out-of-plane vibrations, i.e., the vibrations are also uncharacteristic with respect to frequency.

LITERATURE CITED

- 1. V. V. Mel'nikov, V. V. Stolpakova, and B. V. Gidaspov, Khim. Geterotsikl. Soedin., 1567 (1972).
- 2. V. V. Mel'nikov, V. V. Stolpakova, and M. S. Pevzner, Khim. Geterotsikl. Soedin., 414 (1971).
- 3. P. Goldstein, I. Ladell, and G. Abowitz, Acta. Cryst., B25, 135 (1969).
- 4. E. G. Cox and G. A. Ierey, Proc. Roy. Soc., A207, 110 (1951).
- 5. V. V. Mel'nikov, M. S. Pevzner, V. V. Stolpakova, and L. F. Khor'kova, Khim. Geterotsikl. Soedin., 409 (1971).
- 6. L. A. Gribov, Introduction to the Theory and Calculation of Vibrational Spectra of Polyatomic Molecules [in Russian], Izd. LGU, Leningrad (1965), p. 117.